Tree Analysis Modules

Maarten Ballintijn , Constantin Loizides and Corey Reed

April 2, 2010

Contents

1

3

Introduction
1.1 What is TAM? e
1.2 Organization

Getting Started With TAM

2.1 The Module Concept e
2.2 Making a Module
2.3 An Example Module
2.4 Getting Data From The Tree
2.4.1 Reading Branches Storing Objects
2.4.2 Reading Branches Storing Numbers
2.4.3 Request That The Pointers Be Associated With The Branches
2.4.4 Type Checking e
2.4.5 Load The Data e
2.5 Event Selection
2.6 Error Handling e
2.7 Browsing And Saving Output
2.8 How to transparently run with or without proof
2.9 Output From PROOF
2.10 Passing Objects Between Modules L L.
2.10.1 Accessible Anywhere, Anytime L
2.10.2 Accessible Anywhere During Current Event
Extending TAM Via Data Loader Plugins
3.1 Data Loader Plugins e
3.2 Guidelines For Writing and Loading Plugins
3.3 Event Mixing Example L e

1 Introduction

1.1 What is TAM?

The Tree-Analysis Module (TAM) package was developed with three main goals in mind. First, to
provide a very general, modular framework for analyzing data in ROOT trees. Second, to ensure
compatibility with Proof and allow users to switch between PROOF-based and PROOF-less analysis
with as much ease as possible. Third, to hide, as much as possible, all direct interaction with the
tree itself from the user.

1.2 Organization

The TAM package depends only on a few ROOT objects. Though originally conceived in order
to process Phobos analysis trees (AnTs), TAM is based on two general ideas from ROOT: the
TSelector method for processing trees and the TTask structure for creating and running a hierarchy
of modules. Currently the entire TAM package consists of only three classes:

e TAModule - The base class for all user modules.
e TAMSelector - Provides the (hidden) interaction with the data loaders.

e TAMOutput - Stores output objects for all modules, preserves the module hierarchy and
handles the merging of all modules’ output objects under PROOF.

e TAMVirtualLoader - Defines the interface for the loader plugins.

e TAMYVirtualBranchLoader - Defines interface for virtual branch loaders.

e TAMTreeLoader - Loads tree branch loader into TAM.

o TAMTreeBranchLoader - Loads actual branch of the tree.

e TAMBranchlnfo - Manages information for a branch such as the branch’s name and type.

These classes can be found in the SROOTSYS/include or tam/inc directories.

2 Getting Started With TAM
2.1 The Module Concept

An analysis performed using TAM consists of a hierarchy of modules, each of which can access
any or all branches in the tree. In principal, each module is independent of the other modules
at the same level in the hierarchy; TAM provides functionality for getting the list of submodules
from any given module, but does not provide direct access to parent or neighbor modules. There is
no restriction placed on modules inheriting from TAModule from implementing such functionality,
however.

At any level in the module hierarchy, a module has the ability to stop processing in a variety
of ways: stopping itself and its submodules from further processing of the current execution task
(i.e. the current tree entry in Process(), or the SlaveTerminate() function), stopping all modules
from further processing of the current execution task, or stopping all modules from any further

processing. Such functionality is ideal for proper error handling and for modules dedicated to
performing event selection.

Processing of the tree is performed similarly to the TSelector methodology. The user does not
need to explicitly call any of the main execution tasks of the modules (Begin(), Process(), etc.) as
these are automatically called at the appropriate time by the selector. User-made modules should
also never need to directly access the tree. Thus, knowing the entry number of the entry the module
is currently processing should not be necessary (indeed, it is hidden).

Typical analysis by a module would proceed as follows:

e Make all histograms and request all branches in SlaveBegin().
e Load and process all data in Process() (i.e. fill histograms).

In its most simple form, this is all that is required. The TAM facility takes care of reading the data
from the tree, storing the output objects (e.g. histograms) and making sure that they are correctly
merged when the analysis is run under PROOF.

2.2 Making a Module
To process data using TAM, one must first make a module. All TAM modules:

e Must inherit (publicly) from TAModule.
e Have a member pointer for each branch of the tree they want to use.

e Overload the following functions as necessary:

Begin() to run startup code on the client computer.

SlaveBegin() to run startup code on the computer doing the data analysis.

Process() to process an entry of the tree.

— SlaveTerminate() to run finishing code on the computer which did the data analysis.
— Terminate() to run finishing code on the client computer.

— Notify() to perform some tasks whenever a new file is loaded by the selector.

e Use RegBranch(branch name, pointer) in SlaveBegin() to request each branch the module
will need to load.

e Use LoadBranch(branch name) to load the data from the tree and set their pointer to point
to the data.

e May contain any number of submodules which will automatically execute (unless explicitly
set to be inactive).

2.3 An Example Module

There is an example module ExampleMod with TAM that can be found in the example directory
of TAM. This class demonstrates the usage of some basic TAM functionality. It is a simple module
which reads some data from the tree Event.root generated in the ROOT tutorial “Creation of a
ROOT tree”. The simple module does some event selection, fill/displays two histograms, and saves
them in an output file. Additionally, there is an example macro called ReadTAM.C for using the
example module to process a Tree in event.root. For more information, see the ReadMe.txt in the
example directory.

2.4 Getting Data From The Tree

Under TAM, data is read from the tree branch by branch. This is done not only for simplicity, but
also to ensure efficiency. For example, in most analysis there will be some sort of selection which will
need to be performed on each entry of the tree. In this case, one should read only those branches
which contain the data necessary to do the selection. If an entry passes the selection criteria, then
and only then should other branches be read.

2.4.1 Reading Branches Storing Objects

A module will need a pointer for each branch that it will want to use. The simplest example of this
is when a branch contains an object. For example, ExampleMod will be using a superbranch from
a Tree with leaves such as fNtrack and fTemperature:

e “event” is a superbranch that stores all the objects in tree ”T”.
So it has one member variables:

class ExampleMod : public TAModule {

private:
// my branches
Event* fEvent; //! the event superbranch

A pointer may have to point to an object that is from a derived class. Although the module may
not use any members or functions specific to the derived class, the module should still use a pointer
to this class and not its base class. This is because, at least in principal, the derived class may
contain more information, so we need to make sure the extra memory is allocated to allow this extra
information to be read into memory correctly. The type checking performed by the TAMSelector
each time a new tree is loaded will ensure that the correct type of pointer is used. NOTE: Since
version 1.0 of TAM one may use also pointers to a base class: TAM will always make sure that the
right pointers are allocated.

The class then initializes its pointers to null.

ExampleMod: :ExampleMod (const Char_t* name, const Char_t* title)
TAModule (name, title),
fEvent (0),
fNtrack(0),

fTemperature(0),
fNtrackhist (0),
fTemphist (0)

{

}

NOTE: These pointers should NEVER be made to point to an object created with new! Doing so
can cause a memory leak, since the TAMSelector can change the values of these pointers once any
module calls LoadBranch(branch name).

2.4.2 Reading Branches Storing Numbers

If the data stored in a tree is not an object, then the user will need to declare a class or struct
whose member variables corresponds to the leaves of the branch. Thus, for the following branch,

*Br O :MyBranch : Momentum/F:MomVec[3]/F:NumHits/I *

A module would need to make a struct containing a Float_t, then an array of Float_t’s with size 3
and an Int_t:

class MyNumMod : public TAModule {

public:
struct MyBranch_t {
Float_t fMomentum, fMomVec[3];
Int_t fNumHits;
};

NOTE: The order, as well as the type, of the variables must match the order of the leaves in the
branch!

In order for TAM to be able to do complete type checking on such branches, any class or struct
created for reading such branches must be contained in the TClass dictionary. This is quite a
simple requirement to satisfy; simply add the class or struct to the LinkDef file when compiling the
module. For the example above, of a nested struct, the LinkDef file would contain the following
lines:

#pragma link C++ class MyNumMod+;
#pragma link C++ class MyNumMod::MyBranch_t+;

Now that a proper struct exists for the branch, the module can declare a pointer to it in the usual
way.

class MyNumMod : public TAModule {

public:
struct MyBranch_t {
Float_t fMomentum, fMomVec[3];
Int_t fNumHits;
};

private:
// my branches
MyBranch_t* fMyBranch; //! the MyBranch branch

NOTE: As in the case of reading objects, these pointers should NEVER be made to point to an
object created with new! Doing so can cause a memory leak, since the TAMSelector can change the
values of these pointers once any module calls LoadBranch(branch name).

It should also be noted that in the above example, all leaves of the branch store numbers of the
same size (4 bytes). In some trees, this may not be true; there may be a branch which stores Int_t’s
(4 bytes) together with Short_t’s (2 bytes) or Double_t’s (8 bytes). In ROOT, such a branch can
not be read using a class or struct; for more information see the Root User’s Guide. When using
TAM, however, a struct or class can be made, following the above example, and the data will be
read in correctly. Through complete type checking, TAM is able to recognize this situation and
read the data appropriately. However, reading such branches will be slower than reading branches
containing objects or leaves whose types are all the same size.

2.4.3 Request That The Pointers Be Associated With The Branches

Of course, declaring a pointer is not enough to allow a module to get at the data. The next step is
to associate the pointer with a branch in the tree. This is done using the ReqBranch(branch name,
pointer) function. This function tells the TAMSelector that a module might request a branch with
the given name to be loaded during processing of the tree, and if the branch is loaded, the module
wants to use the specified pointer to access the data from the branch.

This function should only be called in SlaveBegin(). Continuing the example:

void ExampleMod::SlaveBegin() {

// request the branches i need
RegBranch("event" ,fEvent) ;

NOTE: Unlike TTree::SetBranchAddress, one does not pass the address of the pointer, but rather
the pointer itself.

The ReqBranch function does not check that the pointer is of the correct type. This is done
later by the TAMSelector whenever a new tree is loaded. The type checking insists that the pointer
corresponds to the data stored in the branch. This works for both classes (that ROOT knows of)
and fundamental types. NOTE: Since version 1.0 of TAM also pointers to a base class will pass
the check.

2.4.4 Type Checking

TAM uses type checking to be sure that the data contained in the tree corresponds to the module’s
expectations. This type checking requires that whatever pointer the module associates with a
branch (via ReqBranch) be of a type that can be found in the TClass dictionary. Type checking
is performed during Notify, thus whenever a new file is opened. TAM implements type checking
branch by branch in the following way.

1. Checking if the branch stores an object, and if so, if the class of the object is the same as (or
—since version 1.0 of TAM— derived from) all pointers used to request the object.

2. Tf the branch contains fundamental types (numbers), check if all pointers requesting this branch
are of a known class or struct type and if each member of the class/struct corresponds exactly
(both in order and type) to the leaves of the branch.

2.4.5 Load The Data

Once the module has declared pointers for each branch and associated those pointers with the
branches, it is ready to load the actual data. This is done using the LoadBranch(branch name)
function. Once this function has been called, the module can use its pointer to access the data for
the current tree entry.

This function should only be called in Process(). Continuing the example:

void ExampleMod: :Process() {

// Load event superbranch
LoadBranch("event") ;

The TAM facility ensures that no branch will be read from disk more than once during the processing
of a tree entry.

2.5 Event Selection

Simple event selection can be done entry-by-entry during processing of the tree. For most efficient
event selection, a module should load only the branches which contain the data needed to perform
the event selection. Ideally, a module would load only one branch at a time, performing part of the
selection to determine whether it is necessary to load the other branches.

Once a module determines that the current entry in the tree does not pass the event selection,
the module can call SkipEvent() to stop it and its submodules from further processing of the entry.
Thus one could make a single module which handles all the event selection and contains all other
analysis modules (which depend on that event selection) as submodules.

While SkipEvent() will cause the module and its submodules to be made inactive during the
current execution task (i.e. during the Process() of the current entry), it will of course not cease
further processing of the function in which it was called. Thus is it probable that a module will
want to return from the function immediately after calling SkipEvent().

2.6 Error Handling

TAM provides some basic functionality for error handling. The function SendError() is used to
both print an error message and to specify a reaction to the error. Its use is very similar to the
TObject::Error and Warning functions, but it has some simple error handling ability. The function
is declared as follows:

void SendError(const EModResult errlLevel, const Char_t* location, const Char_t* formattedMsg, .. L)

The first parameter is a variable from the TAModule::EModResult enum:

enum EModResult {

kWarning, //a problem requiring no action but just printing of a warning

kAbortModule, //a problem requiring this mod (and its submods) to stop

kAbortEvent, //a problem requiring the processing of this event to stop

kStopModule, //a problem requiring this mod (and its submods) to stop for the rest of the analj
kAbortAnalysis //a problem requiring the processing of the analysis to stop

This parameter tells the TAM facility how to handle the error.
e kWarning - Simply print the specified message as a Warning, but do not alter processing.

e kAbortModule - Print the message as an Error and stop this module (and its submodules)
from further processing. The module will return to its normal state upon the next execute
call from the selector. That is, if called during Process(), the module will process the next
event. If called during SlaveTerminate(), the module can be active again for the Terminate()
call. There is no need to call SkipEvent() after this error has been sent; the entry is skipped
automatically.

e kAbortEvent - Print the message as an Error and stop further processing of all modules. The
modules will return to their normal state upon the next execute call from the selector as
described in kAbortModule. There is no need to call SkipEvent() after this error has been
sent.

e kStopModule - Print the message as an Error and stop this module (and its submodules)
from further processing. The module will never return to its normal state. That is, if called
during Process(), the module will not process any further events. There is no need to call
SkipEvent() after this error has been sent; the entry is skipped automatically.

e kAbortAnalysis - Print the message as a Break and stop further processing of all modules
completely. No module will return to its normal state once this error has been called. There
is no need to call SkipEvent() after this error has been sent.

The SendError() function does not, of course, break out from the function in which it is called.
So while it may not be necessary to call SkipEvent() after an error message has been sent, it
probably is necessary to return from the function after calling SendError() with an error level of
kAbortModule or higher.

An example of using SendError() can be found in the example module:

void ExampleMod: :Process() {

// print a warning that Process was called on this module, but

// don’t stop processing.

SendError (kWarning, "Process", "Function called in module [%s].",
GetName ()) ;

LoadBranch("event");

if ((strcmp(GetName(),"ExampleMod")==0) &&
(fCounter > 10000)) {
// if this module is named ExampleMod, don’t let it (or its submodules)
// process events higher than 10000 (using fCounter to count events)
SendError (kAbortModule, "Process", "Skipping module [%s].", GetName());
return;

}

A module may not always wish to display a warning or error message. TAM modules can use
the Get/SetVerbosity() functions to check and change the verbosity level of the module. NOTE:
SetVerbosity() is not recursive —it does not affect the verbosity setting of submodules. It is entirely
up to the user to decide how a module uses (or ignores) the verbosity setting.

Although a module can skip its own (and its submodules’) processing of the current entry or
execution task without printing an error message, via SkipEvent(), it is not possible for a module to
abort the analysis or the current execution task for all modules without printing an error message.
SendError is by design the only way for a module to accomplish this, thus requiring the module to
give an indication of what went wrong.

2.7 Browsing And Saving Output

In any analysis, there will be some output objects; producing some output is indeed the whole
point of performing an analysis. Under TAM, a module can store its output objects using the
AddOutput(object) function. When running under PROOF, the output objects will be merged
(from each worker computer) and sent back to the client computer, preserving the module hierarchy.
The module hierarchy and their output objects can be browsed in the ROOT browser, as
illustrated in fig. 1.
As an example, ExampleMod creates some histograms and adds them to its output list.

void ExampleMod::MakeHist() {
//called in SlaveBegin()

fTemphist = new THID("T1","Temperature_Hist",40,19.5,21.5);
AddOutput (fTemphist) ;

fNtrackhist = new TH1D("T2","NTrackHist",50,584,616);
AddOutput (fNtrackhist) ;

Only objects which have added to the module’s output list via AddOutput(object) will show up
in the browser. NOTE: when running under PROOF, a module must call AddOuput(object) on
any objects that it wants to send back to the client computer.

The list of output objects can be saved to an output file in two ways. The default method
is to recursively go through the module hierarchy and write each module’s output objects to the
file, thus flattening the hierarchy. The other method is to explicitly save the module output object
containers (TAMOutput’s), preserving the module hierarchy.

This is done by calling Write() on the output list (actually on the top-most task’s output
container). This is straight forward:

L d ROOT Object Browser - O X

FEile Miew OQptions Help

[ExampleMod 7] 2f & alo|el « Optinnl -]

LAl Folders | Contents of "analysis Modules/mod/sub module/Examplekod”
(Jroot |da BoHist g MTrackHist g PtHist

[[IFROOF Sessions
I:l Mnethisrw 0001 mnmeﬂbsilval‘tan;?
[CJIROOT Files f
[:]ﬁnmysm Modules
E‘D rrocd

El[:l stk rocule

B Obiects. | Example Mod v

Figure 1: Root browser showing the module hierarchy and their output objects

TList* output=0;
if (runningUnderProof) {
output = proof->GetOutput();
} else {
output = myTAMSelector->GetModOutput();
}
// to flatten the hierarchy and dump all output objects to the file:
output->Write();
// to preserve the module hierarchy and write all output object containers
// (and output objects) to the file:
output->Write (output->GetName (), TObject::kSingleKey);

NOTE: When running under PROOF, the output list may (in principal) contain other objects
besides the module output containers. If only the module output should be written, the top-most
module’s output container must be extracted from PROOF’s output list:

TList* proofoutput = proof->GetOutput();
TList* modoutput=0;

TObject* obj=0;

TIter nextOut(proofoutput);

while ((obj = mextOut())) {

10

if (obj->InheritsFrom(TAMOutput::Class()) {
modoutput = dynamic_cast<TList*>(obj);
break;

The user should ensure that all module’s output objects have unique names if they are to be
written to a file without the module hierarchy preserved.

If the module hierarchy is preserved when writing the output objects, the user will need to know
which objects are associated with which modules. To retrieve an output object, the user would first
get the appropriate module’s output container, via FindModOutput(moduleName), then get the
output object itself from that container, via FindOutput(outputName). An alternative is to use the
FindOutput(moduleName, outputName) function, which simply combines the two steps. Finally,
please note that the TKey functionality of ROOT provides a way to independently of module names
retrieve output objects from the file. You can simply loop over all TKeys in the file and look at
objects that fulfill your search criteria. For more info check the ROOT manual.

2.8 How to transparently run with or without proof

After you have your top TAM module (called fSuperMod) configured the following pieces of code
shows how to run without and with PROOF.
Assuming you have a Ttree (or TChain) with the input trees called fIn, do:

fSelector = new TAMSelector;
fSelector->AddInput (fSuperMod) ;
fIn->Process(fSelector);

If you have a initialized PROOF session (called fProof), make sure you upload all packages to
PROOF, especially important to upload libTAM.tar, of course. Assuming you have a TDSet with
the input trees called fIn, do:

fProof->AddInput (fSuperMod) ;
fSet->Process("TAMSelector");

2.9 Output From PROOF

TAM has been designed so that a module can be run with or without PROOF, without requiring
the user to change the module or implement special code. As long as a module is written with
the PROOF concept in mind — that is, placing tasks in the appropriate functions (i.e. making
histograms in SlaveBegin()), calling AddOutput(), etc.— the module will function in the same way
under PROOF as it will when run only on the client.

Aside from properly merging output objects, one of the main issues in making the use of PROOF
transparent to the user has been recovering the output objects themselves from the output list. To
illustrate the problem, consider an example module, which declares a pointer to a histogram:

class Example2Mod : public TAModule {

private:
// my histograms
TH1F* fh40; //! channel (4,0)

11

Initializes the pointer to 0 everywhere the module is created (both on the client and worker
computers):

Example2Mod: :Example2Mod (const Char_t* name, const Char_t* title)
TAModule (name, title),
£h40(0),

On the worker computer, assigns the pointer to point to a new histogram:

void Example2Mod::MakeHist() {
// called during SlaveBegin()

fh40 = new TH1F(\"fh40\",\"(4,0)\",100,-5.0,595.0);
AddOutput (£fh40) ;

Then tries to directly use this pointer to access the histogram during Terminate() —i.e. on the
client computer:

void Example2Mod::Terminate() {
fh40->Draw() ;

NOTE: When the module is run on the client without PROOF, this code will work fine.
However, under PROOF, the module which exists on the client computer would never have run
SlaveBegin; so the pointer would still be null in Terminate(), causing the module to crash.

Thus the user would be forced to change the code so that it worked under PROOF —by searching
the module’s output list and assigning the pointer to the appropriate output object.

TAM does this automatically; allowing the user to create a module as shown in the example
and have it work both with and without PROOF. To facilitate this, when running under PROOF,
TAM will:

1. Cache some information about all of the module’s member variables.

2. Whenever AddOutput() is called, on the worker computer, check if the argument of the output
is a member variable of the module.

3. If so, check that the member variable is actually a pointer to an object (as opposed to a pointer
to a pointer or an instance of an object).

4. Store information associating the member variable’s name, V', with the output object’s name, O.
This information will be sent back to the client computer for use by the TAMSelector during
Terminate.

5. On the client computer, search the module’s output list for the object named O.

6. Set the member variable named V' (of the module on theclient computer —which should be null
when running under PROOF) to point to the object named O. This is done before the module
runs Terminate.

It is important for the user to be aware of this issue, as the automatic functionality that TAM
implements to resolve this issue only works when (a) AddOutput() is called using the module’s

12

member variable and (b) that member variable is a pointer to the output object. TAM explic-
itly checks, via TClass and TDataMember, that the type of the member variable is of the form
ClassName*.

Thus, when running under PROOF, the user may have to implement code which will search
the module’s output list and associate the module’s member variables with the appropriate output
objects if the module uses variables such as:

e Instances (or references).
For example, declaring TH1F fh40; and calling AddOutput (&£h40) ;

e Arrays of pointers.

For example, declaring TH1F* fChanHists[10]; and calling AddOutput (fChanHists [0]);

e Copies of pointers.
For example, declaring TH1F* £h40; but calling TH1F* fhcopy = fh40; AddOutput(fhcopy);

In principal, a more complicated algorithm could be implemented into TAM which would handle
member variables that are arrays of pointers, however currently this feature is not being worked
on.

2.10 Passing Objects Between Modules
2.10.1 Accessible Anywhere, Anytime

While modules do not necessarily have access to their parent or neighbor modules, they are nonethe-
less able to send and recieve objects to and from other modules (or even from some code outside the
module hierarchy). For example, an analysis may want to make calibration objects available to sev-
eral modules for use in every event. TAM provides this functionality with the PublishObj(object)
and FindPublicObj(name) functions.
To make an object available to any module in the analysis, a module can use the PublishObj(object)

function. This will add the object to the TAMSelector’s list of public objects, unless the object is
already in the list. There are two restrictions on what can be published:

e Published objects must inherit from TODbject.
e Each object in the published list must have a unique name.

The restriction on the name is in place to ensure compatibility with Proof. Once in the list, any
module can retrieve this object.

FindPublicObj(name) can be used by any module to get an object from the published object
list. Currently it is only possible to search for an object by name. If no object is found in the list
with the specified name, a null pointer will be returned.

Before a module delete’s an object which it has published (or, if the object was on the stack,
before it goes out of scope), the module should remove the object from the list of public objects to
prevent dangling pointer issues. This is done with the RetractObj(name) function. Note that again,
there is no RetractObj(object pointer) function. This is to prevent modules from calling FindPub-
licObj(name) and then sending the result to RetractObj(); only one call to RetractObj(name) is
required. RetractObj(name) will remove the object from the list and return a pointer to the object.
If no object with the specified name was found, it will return a null pointer. Once an object has
been retracted, it can no longer be retrieved by other modules from the list of published objects.

13

2.10.2 Accessible Anywhere During Current Event

It may be desirable to pass certain objects from one module to another for processing the current
event. These objects would be associated with the event —available to any module processing the
event, but unavailable (and properly removed from memory) when the processing of the event is
completed. An example would be an object storing merged and corrected hits for a set of detectors
which could then be used by several modules, but are only useful for the current event.
TAM provides this functionality with the AddObjThisEvt(object) and the FindObjThisEvt(name)

functions. These functions are similar to the PublishObj(object) and FindPublicObj(name) func-
tions. There are two restrictions on what can be added to the event:

e Published objects must inherit from TODbject.
e Each object in the published list must have a unique name.

The restriction on the name is in place to allow quick lookup via THashTable using the object’s
name. Thus retrieving objects from the event should be efficient.

The most important feature of adding objects to the event is that objects added to the event
will be automatically deleted when all modules have finished processing the event. Thus, the rec-
comended usage is for modules to simply leave objects in the event and let TAM take care of clearing
the memory. It is, however, possible to remove objects from the event using the RemoveObjThi-
sEvt(name) function. It is up to the user to delete the object once it has been removed from the
event.

3 Extending TAM Via Data Loader Plugins

NOTE: The features explained in this chapter apply to TAM versions 1.0 and higher only.

3.1 Data Loader Plugins

The extension of TAM by data loader plugins allows TAM to do tasks such as event mixing or the
converting of branches. TAM works in tandem with data loader plugins to create virtual branches
on the fly from the branches of a single or multiple trees. On a given name of a branch TAM will
first loop over a list of given plugins to find a plugin which provides the (virtual) branch name.
If the branch name is not provided it will browse the branches of the connected trees if there is
any. The virtual branches act collectively as a single tree for analysis. Virtual branches like actual
branches are requested and loaded by TAM modules via ReqBranch and LoadBranch.

The virtual branches in TAM are never directly accessed by plugins instead TAM serves as the
interface between the two. Fig. 2 depicts the situation of TAM with various plugins and N actual
branches and M virtual branches. The amount of virtual and actual branches are not required
to be equal. For example, consider the mixing of two identical trees where the amount of virtual
branches equals half the amount of actual branches. However, on the level of the TAM modules,
there is no distinction between virtual and actual branches.

For example, the plugins shown in fig. 2 could do the following tasks without the need to change
any of the analysis modules.

e Tree Loader Plugin (Std) - does the normal task of reading actual branches.

14

B1 B2 ---- BN V1 v2 ---- VM

TAM

Std Mix Map Conv

Figure 2: Figure showing interface between TAM, plugins, and branches.

e Mixer Plugin (Mix) - does tree mixing and then returns the mixed branch to TAM.

e Mapping Plugin (Map) - does remapping of a branch on the fly and returns the remapped
branch to TAM.

e Conversion Plugin (Conv) - does converting of braches to be return to TAM for analysis.

3.2 Guidelines For Writing and Loading Plugins

This section describes how to write and load a plugin into the TAM facility. To write your own
plugin, a loader plugin must have a branch loader derived TAMVirtualBranchLoader and a loader
derived from TAMVirtualLoader. The branch loader will be created by the loader. For example in
the example plugin, a mixer loader could be declared using:

class MixerLoader : public TAMVirtualLoader {
public:

MixerLoader();

“MixerLoader();

TAMVirtualBranchlLoader* CreateBranchLoader(TTree *tree, TAMBranchInfo* brInfo);

All loaders are required to have a CreateBranchLoader() member function. The CreateBranchLoader
function creates,initializes, and returns a TAMVirtualBranchLoader derived class object (in this ex-
ample MixerBranchLoader). In the example,the branch loader could be declared using:

class MixerBranchLoader : public TAMVirtualBranchLoader {
public:
MixerBranchLoader () ;

15

MixerBranchloader (TAMBranchInfo *binfo, MixerLoader *1, TreeMixer *fTmix);
“MixerBranchLoader () ;

void Clear(Option_t *option="");
void* GetAddress() const;

Int_t GetEntry(Long64_t entry);
Bool_t Notify(TTree *tree);

All shown functions in MixerBranchLoader are required for any branch loaders. The tasks
performed by the functions should be:

e Clear() - Clear up data structures used by the plugin (in this example the mixer plugin).
o Notify() - Notifies when a new file has been opened.

e GetAddress() - Returns the address to which pointer passed in ReqBranch() will be set to.
e GetEntry() - Return data for the given entry.

The loader plugin must be loaded into TAMSelector using AddLoader(). For example, the
loader plugin named MixerLoader is loaded into a TAMSelector object pointer using:

MixerLoader *mloader = new MixerLoader;
Selector->AddLoader (mloader) ;

3.3 Event Mixing Example

The documentation provides a mixing example for ROOT trees. The tam/example directory in-

cludes a mixing plugin for event mixing and a macro to run the mixing plugin. The example uses

trees created in the ROOT tutorial at http://root.cern.ch/root/html/examples/MainEvent.cxx.html.
The included rootlogon.C will; create the neccessary files, compile, and link all the mixing modules.

The ROOT files can also be manually created in SROOTSYS /test using:

make Event
./Event

The command ./Event also supports arguments for number of events, split and compression
level. The ROOT tutorial file MainEvent.cxx provides more information on the use ./Event. Once
the ROQOT files have been created and are placed in the same directory as runExampleMod.C the
example macros can be executed. To execute the macro given the files Eventl.root and Event2.root
exist, begin ROOT in the same directory as the example macro and use:

.x runExampleMod.C+("Eventl.root","Event2.root")

The output will then be saved as example_output.root in the current directory and can be
browsed using the TBrowser.
The included files for the example and their descriptions are:

e runExampleMod.C - Macro that can executed to run the example module on a single file or
two input files.

16

e ExampleMod.[h/cxx] - Example module header and class implementation files. Class inher-
iting from TAModule that makes and fills histograms.

o TreeMixer.[h/cxx] - Header and class implementation files. Does actual mixing of trees and
returns the mixed data. It contains an internal TreeDataLoader class that loads actual data
from tree and returns it to the Tree Mixer.

e MixerBranchLoader.[h/cxx] - Header and class implementation files. Loads mixed Branch.
e MixerLoader.[h/cxx] - Header and class implementation files.Creates Mixer Branch Loader.

The macro runExampleMod.C can run the example module with an input of either a single
ROOT tree or a two ROOT trees(in principle more trees are possible). If the input is a single tree
the macro processes and output the file. For multiple input files, the mixer plugin is given to the
TAMSelector. The input files are used in a TChain that TAMSelector will process. To properly
prepare trees for event mixing and support the use of PROOF, trees are added as friends of the
first tree in the chain using AddFriend() as:

chain->AddFriend(friendchain, "treealias");

If the mixer has been loaded and all trees to be analyzed are friends of a chain TAMSelector
can then begin to process events. The included mixer plugin only does the mixing of the number
of tracks and the tracks in the input files. After processing the events the macro writes the output
file example_output.root in the current directory.

17

	Introduction
	What is TAM?
	Organization

	Getting Started With TAM
	The Module Concept
	Making a Module
	An Example Module
	Getting Data From The Tree
	Reading Branches Storing Objects
	Reading Branches Storing Numbers
	Request That The Pointers Be Associated With The Branches
	Type Checking
	Load The Data

	Event Selection
	Error Handling
	Browsing And Saving Output
	How to transparently run with or without proof
	Output From PROOF
	Passing Objects Between Modules
	Accessible Anywhere, Anytime
	Accessible Anywhere During Current Event

	Extending TAM Via Data Loader Plugins
	Data Loader Plugins
	Guidelines For Writing and Loading Plugins
	Event Mixing Example

